Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Hered ; 115(3): 241-252, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38567866

ABSTRACT

Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)-a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs-or retained ancestrally duplicated genes-from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups.


Subject(s)
Black Widow Spider , Evolution, Molecular , Gene Duplication , Genome , Animals , Black Widow Spider/genetics , Chromosomes/genetics , Phylogeny , Transcriptome , Spiders/genetics , Biological Evolution , Molecular Sequence Annotation , Selection, Genetic
2.
Nat Ecol Evol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641700

ABSTRACT

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.

3.
Trends Ecol Evol ; 38(8): 719-726, 2023 08.
Article in English | MEDLINE | ID: mdl-37024381

ABSTRACT

The contribution of pre-existing phenotypic variation to evolution in novel environments has long been appreciated. Nevertheless, evolutionary ecologists have struggled with communicating these aspects of the adaptive process. In 1982, Gould and Vrba proposed terminology to distinguish character states shaped via natural selection for the roles they currently serve ('adaptations') from those shaped under preceding selective regimes ('exaptations'), with the intention of replacing the inaccurate 'preadaptation'. Forty years later, we revisit Gould and Vrba's ideas which, while often controversial, continue to be widely debated and highly cited. We use the recent emergence of urban evolutionary ecology as a timely opportunity to reintroduce the ideas of Gould and Vrba as an integrated framework to understand contemporary evolution in novel environments.


Subject(s)
Biological Evolution , Ecology , Adaptation, Physiological , Acclimatization , Selection, Genetic
4.
Proc Natl Acad Sci U S A ; 120(3): e2216789120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634133

ABSTRACT

Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated "natural experiments" in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus, a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.


Subject(s)
Lizards , Animals , Humans , Lizards/genetics , Ecosystem , Adaptation, Physiological/genetics , Cities , Genome/genetics , Biological Evolution
5.
Br J Psychiatry ; 223(1): 301-308, 2023 07.
Article in English | MEDLINE | ID: mdl-36503694

ABSTRACT

BACKGROUND: Psychotic disorders and schizotypal traits aggregate in the relatives of probands with schizophrenia. It is currently unclear how variability in symptom dimensions in schizophrenia probands and their relatives is associated with polygenic liability to psychiatric disorders. AIMS: To investigate whether polygenic risk scores (PRSs) can predict symptom dimensions in members of multiplex families with schizophrenia. METHOD: The largest genome-wide data-sets for schizophrenia, bipolar disorder and major depressive disorder were used to construct PRSs in 861 participants from the Irish Study of High-Density Multiplex Schizophrenia Families. Symptom dimensions were derived using the Operational Criteria Checklist for Psychotic Disorders in participants with a history of a psychotic episode, and the Structured Interview for Schizotypy in participants without a history of a psychotic episode. Mixed-effects linear regression models were used to assess the relationship between PRS and symptom dimensions across the psychosis spectrum. RESULTS: Schizophrenia PRS is significantly associated with the negative/disorganised symptom dimension in participants with a history of a psychotic episode (P = 2.31 × 10-4) and negative dimension in participants without a history of a psychotic episode (P = 1.42 × 10-3). Bipolar disorder PRS is significantly associated with the manic symptom dimension in participants with a history of a psychotic episode (P = 3.70 × 10-4). No association with major depressive disorder PRS was observed. CONCLUSIONS: Polygenic liability to schizophrenia is associated with higher negative/disorganised symptoms in participants with a history of a psychotic episode and negative symptoms in participants without a history of a psychotic episode in multiplex families with schizophrenia. These results provide genetic evidence in support of the spectrum model of schizophrenia, and support the view that negative and disorganised symptoms may have greater genetic basis than positive symptoms, making them better indices of familial liability to schizophrenia.


Subject(s)
Depressive Disorder, Major , Psychotic Disorders , Schizophrenia , Schizotypal Personality Disorder , Humans , Schizophrenia/diagnosis , Schizophrenia/genetics , Schizotypal Personality Disorder/diagnosis , Schizotypal Personality Disorder/genetics , Schizotypal Personality Disorder/psychology , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/genetics , Psychotic Disorders/genetics , Psychotic Disorders/psychology , Risk Factors
6.
Ecol Evol ; 12(11): e9552, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36425909

ABSTRACT

Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.

7.
Schizophrenia (Heidelb) ; 8(1): 106, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36434002

ABSTRACT

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia, and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, and major depressive disorder. In this study, we examined the polygenic risk burden of bipolar disorder and major depressive disorder in 257 multiplex schizophrenia families (N = 1005) from the Irish Study of High-Density Multiplex Schizophrenia Families versus 2205 ancestry-matched controls. Our results indicate that members of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and major depressive disorder compared to population controls. However, this observation is largely attributable to the part of the genetic risk that bipolar disorder or major depressive disorder share with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic risks in multiplex families requires an assessment of the relative contribution of shared versus unique genetic factors to account for genetic correlations across psychiatric disorders.

8.
Trends Ecol Evol ; 37(11): 1006-1019, 2022 11.
Article in English | MEDLINE | ID: mdl-35995606

ABSTRACT

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.


Subject(s)
Ecosystem , Urbanization , Biodiversity , Cities , Ecology/methods , Humans
9.
Transl Psychiatry ; 12(1): 291, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35864105

ABSTRACT

Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.


Subject(s)
Psychotic Disorders , Schizophrenia , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Psychotic Disorders/genetics , Risk Factors , Schizophrenia/epidemiology , Schizophrenia/genetics
10.
Brain Behav Immun ; 104: 183-190, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35714915

ABSTRACT

Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.

11.
Genes (Basel) ; 13(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35205228

ABSTRACT

Bone strength and the incidence and severity of skeletal disorders vary significantly among human populations, due in part to underlying genetic differentiation. While clinical models predict that this variation is largely deleterious, natural population variation unrelated to disease can go unnoticed, altering our perception of how natural selection has shaped bone morphologies over deep and recent time periods. Here, we conduct the first comparative population-based genetic analysis of the main bone structural protein gene, collagen type I α 1 (COL1A1), in clinical and 1000 Genomes Project datasets in humans, and in natural populations of chimpanzees. Contrary to predictions from clinical studies, we reveal abundant COL1A1 amino acid variation, predicted to have little association with disease in the natural population. We also find signatures of positive selection associated with intron haplotype structure, linkage disequilibrium, and population differentiation in regions of known gene expression regulation in humans and chimpanzees. These results recall how recent and deep evolutionary regimes can be linked, in that bone morphology differences that developed among vertebrates over 450 million years of evolution are the result of positive selection on subtle type I collagen functional variation segregating within populations over time.


Subject(s)
Bone and Bones , Genetic Variation , Pan troglodytes , Animals , Biological Evolution , Bone and Bones/anatomy & histology , Collagen Type I, alpha 1 Chain/genetics , Genetics, Population , Humans , Pan troglodytes/genetics , Selection, Genetic
12.
Evol Appl ; 14(4): 1109-1123, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33897824

ABSTRACT

As human-induced change eliminates natural habitats, it impacts genetic diversity and population connectivity for local biodiversity. The South African Cape Floristic Region (CFR) is the most diverse extratropical area for plant biodiversity, and much of its habitat is protected as a UNESCO World Heritage site. There has long been great interest in explaining the underlying factors driving this unique diversity, especially as much of the CFR is endangered by urbanization and other anthropogenic activity. Here, we use a population and landscape genetic analysis of SNP data from the CFR endemic plant Leucadendron salignum or "common sunshine conebush" as a model to address the evolutionary and environmental factors shaping the vast CFR diversity. We found that high population structure, along with relatively deeper and older genealogies, is characteristic of the southwestern CFR, whereas low population structure and more recent lineage coalescence depict the eastern CFR. Population network analyses show genetic connectivity is facilitated in areas of lower elevation and higher seasonal precipitation. These population genetic signatures corroborate CFR species-level patterns consistent with high Pleistocene biome stability and landscape heterogeneity in the southwest, but with coincident instability in the east. Finally, we also find evidence of human land-usage as a significant gene flow barrier, especially in severely threatened lowlands where genetic connectivity has been historically the highest. These results help identify areas where conservation plans can prioritize protecting high genetic diversity threatened by contemporary human activities within this unique cultural UNESCO site.

13.
Evol Appl ; 14(1): 248-267, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33519968

ABSTRACT

Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban "socio-eco-evolutionary dynamics." Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities.

14.
Genes (Basel) ; 11(1)2020 01 12.
Article in English | MEDLINE | ID: mdl-31940922

ABSTRACT

Due to their abundance and ability to invade diverse environments, many arthropods have become pests of economic and health concern, especially in urban areas. Transcriptomic analyses of arthropod ovaries have provided insight into life history variation and fecundity, yet there are few studies in spiders despite their diversity within arthropods. Here, we generated a de novo ovarian transcriptome from 10 individuals of the western black widow spider (Latrodectus hesperus), a human health pest of high abundance in urban areas, to conduct comparative ovarian transcriptomic analyses. Biological processes enriched for metabolism-specifically purine, and thiamine metabolic pathways linked to oocyte development-were significantly abundant in L. hesperus. Functional and pathway annotations revealed overlap among diverse arachnid ovarian transcriptomes for highly-conserved genes and those linked to fecundity, such as oocyte maturation in vitellogenin and vitelline membrane outer layer proteins, hormones, and hormone receptors required for ovary development, and regulation of fertility-related genes. Comparative studies across arachnids are greatly needed to understand the evolutionary similarities of the spider ovary, and here, the identification of ovarian proteins in L. hesperus provides potential for understanding how increased fecundity is linked to the success of this urban pest.


Subject(s)
Black Widow Spider , Gene Expression Profiling , Ovary/metabolism , Transcriptome , Animals , Black Widow Spider/genetics , Black Widow Spider/metabolism , Female , Humans , Urban Health
15.
Mol Ecol ; 28(18): 4138-4151, 2019 09.
Article in English | MEDLINE | ID: mdl-31482608

ABSTRACT

Evidence is growing that human modification of landscapes has dramatically altered evolutionary processes. In urban population genetic studies, urbanization is typically predicted to act as a barrier that isolates populations of species, leading to increased genetic drift within populations and reduced gene flow between populations. However, urbanization may also facilitate dispersal among populations, leading to higher genetic diversity within, and lower differentiation between, urban populations. We reviewed the literature on nonadaptive urban evolution to evaluate the support for each of these urban fragmentation and facilitation models. In a review of the literature with supporting quantitative analyses of 167 published urban population genetics studies, we found a weak signature of reduced within-population genetic diversity and no evidence of consistently increased between-population genetic differentiation associated with urbanization. In addition, we found that urban landscape features act as barriers or conduits to gene flow, depending on the species and city in question. Thus, we speculate that dispersal ability of species and environmental heterogeneity between cities contributes to the variation exhibited in our results. However, >90% of published studies reviewed here showed an association of urbanization with genetic drift or gene flow, highlighting the strong impact of urbanization on nonadaptive evolution. It is clear that species biology and city heterogeneity obscure patterns of genetic drift and gene flow in a quantitative analysis. Thus, we suggest that future research makes comparisons of multiple cities and nonurban habitats, and takes into consideration species' natural history, environmental variation, spatial modelling and marker selection.


Subject(s)
Gene Flow , Genetic Drift , Urbanization , Genetic Variation , Geography , Models, Genetic
16.
Evol Appl ; 12(3): 384-398, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30828362

ABSTRACT

Urban ecosystems are rapidly expanding throughout the world, but how urban growth affects the evolutionary ecology of species living in urban areas remains largely unknown. Urban ecology has advanced our understanding of how the development of cities and towns change environmental conditions and alter ecological processes and patterns. However, despite decades of research in urban ecology, the extent to which urbanization influences evolutionary and eco-evolutionary change has received little attention. The nascent field of urban evolutionary ecology seeks to understand how urbanization affects the evolution of populations, and how those evolutionary changes in turn influence the ecological dynamics of populations, communities, and ecosystems. Following a brief history of this emerging field, this Perspective article provides a research agenda and roadmap for future research aimed at advancing our understanding of the interplay between ecology and evolution of urban-dwelling organisms. We identify six key questions that, if addressed, would significantly increase our understanding of how urbanization influences evolutionary processes. These questions consider how urbanization affects nonadaptive evolution, natural selection, and convergent evolution, in addition to the role of urban environmental heterogeneity on species evolution, and the roles of phenotypic plasticity versus adaptation on species' abundance in cities. Our final question examines the impact of urbanization on evolutionary diversification. For each of these six questions, we suggest avenues for future research that will help advance the field of urban evolutionary ecology. Lastly, we highlight the importance of integrating urban evolutionary ecology into urban planning, conservation practice, pest management, and public engagement.

17.
Proc Biol Sci ; 285(1884)2018 08 01.
Article in English | MEDLINE | ID: mdl-30068686

ABSTRACT

As urbanization drastically alters the natural landscape and generates novel habitats within cities, the potential for changes to gene flow for urban-dwelling species increases. The western black widow spider (Latrodectus hesperus) is a medically relevant urban adapter pest species, for which we have previously identified population genetic signatures consistent with urbanization facilitating gene flow, likely due to human-mediated transport. Here, in an analysis of 1.9 million genome-wide SNPs, we contrast broad-scale geographical analyses of 10 urban and 11 non-urban locales with fine-scale within-city analyses including 30 urban locales across the western USA. These hierarchical datasets enable us to test hypotheses of how urbanization impacts multiple urban cities and their genetic connectivity at different spatial scales. Coupled fine-scale and broad-scale analyses reveal contrasting patterns of high and low genetic differentiation among locales within cities as a result of low and high genetic connectivity, respectively, of these cities to the overall population network. We discuss these results as they challenge the use of cities as replicates of urban eco-evolution, and have implications for conservation and human health in a rapidly growing urban habitat.


Subject(s)
Black Widow Spider/genetics , Gene Flow , Animals , Cities , Genetic Variation , Polymorphism, Single Nucleotide , United States
18.
Mol Ecol ; 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29972610

ABSTRACT

Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide single nucleotide polymorphism variation from mitochondrial and nuclear double-digest RAD (ddRAD) sequence data sets from 210 individuals sampled from 11 urban and 10 nonurban locales across its distribution of the Western United States. From urban and nonurban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among nonurban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health.

19.
Dev Psychopathol ; 28(1): 199-212, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25924976

ABSTRACT

Children's observed effortful control (EC) at 30, 42, and 54 months (n = 145) was predicted from the interaction between mothers' observed parenting with their 30-month-olds and three variants of the solute carrier family C6, member 3 (SLC6A3) dopamine transporter gene (single nucleotide polymorphisms in intron8 and intron13, and a 40 base pair variable number tandem repeat [VNTR] in the 3'-untranslated region [UTR]), as well as haplotypes of these variants. Significant moderating effects were found. Children without the intron8-A/intron13-G, intron8-A/3'-UTR VNTR-10, or intron13-G/3'-UTR VNTR-10 haplotypes (i.e., haplotypes associated with the reduced SLC6A3 gene expression and thus lower dopamine functioning) appeared to demonstrate altered levels of EC as a function of maternal parenting quality, whereas children with these haplotypes demonstrated a similar EC level regardless of the parenting quality. Children with these haplotypes demonstrated a trade-off, such that they showed higher EC, relative to their counterparts without these haplotypes, when exposed to less supportive maternal parenting. The findings revealed a diathesis-stress pattern and suggested that different SLC6A3 haplotypes, but not single variants, might represent different levels of young children's sensitivity/responsivity to early parenting.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/genetics , Executive Function , Gene-Environment Interaction , Mothers , Parenting/psychology , Self-Control/psychology , Child , Child, Preschool , Disease Susceptibility , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Infant , Longitudinal Studies , Male , Minisatellite Repeats , Polymorphism, Single Nucleotide
20.
Dev Psychopathol ; 27(3): 709-23, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25159270

ABSTRACT

We used sex, observed parenting quality at 18 months, and three variants of the catechol-O-methyltransferase gene (Val158Met [rs4680], intron1 [rs737865], and 3'-untranslated region [rs165599]) to predict mothers' reports of inhibitory and attentional control (assessed at 42, 54, 72, and 84 months) and internalizing symptoms (assessed at 24, 30, 42, 48, and 54 months) in a sample of 146 children (79 male). Although the pattern for all three variants was very similar, Val158Met explained more variance in both outcomes than did intron1, the 3'-untranslated region, or a haplotype that combined all three catechol-O-methyltransferase variants. In separate models, there were significant three-way interactions among each of the variants, parenting, and sex, predicting the intercepts of inhibitory control and internalizing symptoms. Results suggested that Val158Met indexes plasticity, although this effect was moderated by sex. Parenting was positively associated with inhibitory control for methionine-methionine boys and for valine-valine/valine-methionine girls, and was negatively associated with internalizing symptoms for methionine-methionine boys. Using the "regions of significance" technique, genetic differences in inhibitory control were found for children exposed to high-quality parenting, whereas genetic differences in internalizing were found for children exposed to low-quality parenting. These findings provide evidence in support of testing for differential susceptibility across multiple outcomes.


Subject(s)
Catechol O-Methyltransferase/genetics , Executive Function/physiology , Inhibition, Psychological , Parenting/psychology , Problem Behavior , 3' Untranslated Regions/genetics , Child , Child, Preschool , Disease Susceptibility , Female , Genotype , Haplotypes/genetics , Humans , Infant , Introns/genetics , Male , Methionine/genetics , Sex Factors , Valine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...